## Note

# Generalized Pöschl-Teller potential 

Mehmet Șimṣek and Zeynel Yalçin ${ }^{1}$<br>Department of Physics, Faculty of Arts and Sciences, Gazi University, 06500 Ankara, Turkey

Received 24 February 1994


#### Abstract

From the point of view of the theory of differential equations, we present a four-parameter exactly solvable generalized Pöschl-Teller potential, related to the Jacobi polynomials, using the previously unconsidered equations.


A simple method for obtaining the solutions to the Schrödinger equation was proposed by Bhattacharjie and Sudarshan [1]. Recently, Lévai [2] has used this idea for generating exactly solvable problems in non-relativistic quantum mechanics, and a number of solvable potentials have been reported [1-4]. The purpose of this note is to add a new type of solvable potentials to the already existing ones.

The Schrödinger equation is

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \Psi(r)}{\mathrm{d} r^{2}}+[E-V(r)] \Psi(r)=0 \tag{1}
\end{equation*}
$$

where

$$
E=\frac{2 \mu}{\hbar^{2}} \epsilon \quad \text { and } \quad V(r)=\frac{2 \mu}{\hbar^{2}} v(r)
$$

Bhattacharjie and Sudarshan [1] considered the solution of the Schrödinger equation to be

$$
\begin{equation*}
\Psi(r)=f(r) F(g(r)) \tag{2}
\end{equation*}
$$

where $F(g(r))$ is a function which satisfies the second-order differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} F(g)}{\mathrm{d} g^{2}}+Q(g) \frac{\mathrm{d} F(g)}{\mathrm{d} g}+R(g) F(g)=0 . \tag{3}
\end{equation*}
$$

Choosing $Q(g(r))$ and $R(g(r))$, eq. (3) is reduced to a special case of the hypergeometric equation [5]. Substituting (2) into (1) and comparing with (3) leads to that $f(r)$ is given by

[^0]\[

$$
\begin{equation*}
f(r)=N\left(g^{\prime}\right)^{-1 / 2} \exp \left[\frac{1}{2} \int^{g} Q(g) \mathrm{d} g\right] \tag{4}
\end{equation*}
$$

\]

After eliminating $f(r)$, expressed explicitly in form (4), one can easily construct $E-V(r)$ by comparing (1) and (3) in terms of $g(r), Q(g(r))$ and $R(g(r))$ :

$$
\begin{equation*}
E-V(r)=\frac{g^{\prime \prime \prime}}{2 g^{\prime}}-\frac{3}{4}\left(\frac{g^{\prime \prime}}{g^{\prime}}\right)^{2}+\left(g^{\prime}\right)^{2}\left[R(g)-\frac{1}{2} \frac{\mathrm{~d} Q(g)}{\mathrm{d} g}-\frac{1}{4} Q^{2}(g)\right] . \tag{5}
\end{equation*}
$$

The idea is to find the fraction of the right-hand side of (5) corresponding to the potential and energy. The forms of $Q(g(r))$ and $R(g(r))$ are well defined for any solution $F(g(r))$ of a hypergeometric equation [5]. It transpired [2-4] that a number of solvable potentials can be obtained by letting the solutions to eq. (3) be Jacobi polynomials. Generally, Lévai [2] considered the differential equations

$$
\begin{equation*}
\frac{\left(g^{\prime}\right)^{2}}{\left(1-g^{2}\right)}=C, \quad \frac{\left(g^{\prime}\right)^{2}}{\left(1-g^{2}\right)^{2}}=C, \quad \frac{\left(g^{\prime}\right)^{2} g}{\left(1-g^{2}\right)^{2}}=C \tag{6}
\end{equation*}
$$

and used the Jacobi polynomials (eq. (22.6.1) of ref. [5]). Furthermore Lévai [2] classified the obtained potentials as PI, PII and PIII types. Then, Williams [3] followed this approach by using the third solution (eq. (22.6.3) of ref. [5]) to the hypergeometric equation, by considering the following differential equations:

$$
\begin{equation*}
\frac{\left(g^{\prime}\right)^{2}}{(1-g)^{2}}=C \quad \text { and } \quad \frac{\left(g^{\prime}\right)^{2}}{(1+g)^{2}}=C \tag{7}
\end{equation*}
$$

to find $g(r)$. More recently, we have presented a new class of analytical solvable potentials [4] by using the special cases of the Jacobi polynomials.

Here we shall consider the fourth solution (eq. (22.6.4) of ref. [5]) to eq. (3). So, we take the $F(g)$ function as

$$
\begin{equation*}
F(g)=\left(\sin \left(\frac{g}{2}\right)\right)^{\alpha+1 / 2}\left(\cos \left(\frac{g}{2}\right)\right)^{\beta+1 / 2} P_{n}^{\alpha, \beta}(\cos g) \tag{8}
\end{equation*}
$$

where $P_{n}^{\alpha, \beta}(\cos g)$ is a Jacobi polynomial which satisfies (3) when

$$
\begin{equation*}
Q(g(r))=0 \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
R(g)=\frac{1-4 \alpha^{2}}{16 \sin ^{2}\left(\frac{g}{2}\right)}+\frac{1-4 \beta^{2}}{16 \cos ^{2}\left(\frac{g}{2}\right)}+\left(n+\frac{\alpha+\beta+1}{2}\right)^{2} . \tag{10}
\end{equation*}
$$

Substituting (9) and (10) into (5), we obtain

$$
\begin{align*}
E-V(r)= & \frac{g^{\prime \prime \prime}}{2 g^{\prime}}-\frac{3}{4}\left(\frac{g^{\prime \prime}}{g^{\prime}}\right)^{2}+\frac{1-4 \alpha^{2}}{16} \frac{\left(g^{\prime}\right)^{2}}{\sin ^{2}\left(\frac{g}{2}\right)}+\frac{1-4 \beta^{2}}{16} \frac{\left(g^{\prime}\right)^{2}}{\cos ^{2}\left(\frac{g}{2}\right)} \\
& +\left(n+\frac{\alpha+\beta+1)}{2}\right)^{2}\left(g^{\prime}\right)^{2} \tag{11}
\end{align*}
$$

In order to identity the potential and energy, we can use different kinds of $g(r)$ functions. Here, we shall consider the case

$$
\begin{equation*}
\frac{\left(g^{\prime}\right)^{2}}{\cos ^{2}\left(\frac{g}{2}\right)}=C \tag{12}
\end{equation*}
$$

where $C$ is a constants.
The solution to (12) is given by

$$
\begin{equation*}
g(r)=2 \arccos \left[\frac{2 b \exp (-a r)}{1+b^{2} \exp (-2 a r)}\right] \tag{13}
\end{equation*}
$$

where $a$ and $b$ are arbitrary constants. By substituting into (11) we obtain $E$ and $V(r)$ and the corresponding wave functions

$$
\begin{equation*}
V(r)=\frac{a^{2} b^{2}\left(1-16\left(n+\frac{\alpha+\beta+1}{2}\right)^{2}\right) \exp (-2 a r)}{\left(1+b^{2} \exp (-2 a r)\right)^{2}}+\frac{a^{2} b^{2}\left(4 \alpha^{2}-1\right) \exp (-2 a r)}{\left(1-b^{2} \exp (-2 a r)\right)^{2}} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
E=-a^{2} \beta^{2} \tag{15}
\end{equation*}
$$

where $\alpha$ and $\beta$ are Jacobi polynomials parameters which have the initial restrictions $\alpha, \beta>-1$. As can be seen from (14) $V(r)$ is dependent on the quantum number $n$. We can remove this dependence as follow: For a given fixed $\alpha$ we redefine $a^{2} b^{2}\left(4 \alpha^{2}-1\right)$ as a constant $B$. Furthermore, we set

$$
\begin{equation*}
-\beta=\alpha+1+2 n-\frac{\sqrt{1+\frac{A}{a^{2} b^{2}}}}{2} \tag{16}
\end{equation*}
$$

Where $A$ is another constant. By substitution, we have the new type four-parameter potential, independent of $n$,

$$
\begin{equation*}
V(r)=-\frac{A \exp (-2 a r)}{\left(1+b^{2} \exp (-2 a r)\right)^{2}}+\frac{B \exp (-2 a r)}{\left(1-b^{2} \exp (-2 a r)\right)^{2}} \tag{17}
\end{equation*}
$$

where $a$ and $b$ are defined above, and, $A$ and $B$ are given as

$$
\begin{equation*}
A=a^{2} b^{2}\left(16\left(n+\frac{\alpha+\beta+1}{2}\right)^{2}-1\right) \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
B=a^{2} b^{2}\left(4 \alpha^{2}-1\right) \tag{19}
\end{equation*}
$$

It should be noted that for given positive $A, B$, (or $\alpha>1 / 2, \beta>-1$ ) and any $a, b$ there is an extra condition on the quantum number $n$,

$$
\begin{equation*}
-\alpha+\frac{\sqrt{1+\frac{A}{a^{2} b^{2}}}}{2}>2 n \tag{20}
\end{equation*}
$$

in order that the potential (17) have a number of bound states. Combining these parameters (eqs. (18) and (19)) and by substitution into (15), we obtain, the energy spectra as

$$
\begin{equation*}
E_{n}=-a^{2}\left[2 n+1+\frac{1}{2}\left(-\sqrt{1+\frac{A}{a^{2} b^{2}}}+\sqrt{1+\frac{B}{a^{2} b^{2}}}\right)\right]^{2} \tag{21}
\end{equation*}
$$

From (2), (4), (8) and (13) once can find that the corresponding unnormalised wave functions that vanish at $r=\infty$ are

$$
\begin{equation*}
\Psi(r) \simeq \frac{1}{\sqrt{2 a}}(u)^{\alpha}\left(1-u^{2}\right)^{(\beta+1)} P_{n}^{\alpha, \beta}\left(2 u^{2}-1\right) \tag{22}
\end{equation*}
$$

Here

$$
u=\frac{2 b \exp (-a r)}{1+b^{2} \exp (-2 a r)}
$$

The quadratic integrability of the wave functions (22) depends on their behavior as $r \rightarrow 0$. The Jacobi functions in (22) are well-behaved, for all values of $\alpha>0$ and $\beta>-1$, as $r \rightarrow 0$.

Finally, it is interesting to compare the Pöschl-Teller potential [6-9] with the four-parameter new potential in eq. (17). By substituting $i \lambda$ for $a$ and 1 for $b^{2}$, one can rewrite the potential (17) as

$$
\begin{equation*}
V(r)=-\frac{A / 4}{\cos ^{2}(\lambda r)}-\frac{B / 4}{\sin ^{2}(\lambda r)} \tag{23}
\end{equation*}
$$

This form of the $\mathrm{P}-\mathrm{T}$ potential has negative energies and it is a special case of the potential (17). However, under these conditions the potential parameters $A$ and $B$ (eqs. (18) and (19)), and the parameters of the $\mathrm{P}-\mathrm{T}$ potential, change their signs. We note that by choosing appropriate parameters, the attractive part of our potential (17) is reduced to the attractive part of the Tietz potential [10], and also to the Rosen-Morse potential [11]. Moreover, one can find other slightly different analytically solvable exponential-type potentials in the literature [12,13].

For applications, the four constants appearing in the potential (17) can be determined by the following three conditions for two atomic molecules:

$$
\begin{equation*}
V^{\prime}\left(r_{e}\right)=0, \quad V(\infty)-V\left(r_{e}\right)=D_{e}, \quad V^{\prime \prime}\left(r_{e}\right)=k_{e} \tag{24}
\end{equation*}
$$

and also from the rotational-vibrational coupling constants

$$
\begin{equation*}
\alpha_{e}=-\left[X r_{e} / 3+1\right]\left(\frac{6 B_{e}^{2}}{\omega_{e}}\right)=F\left(\frac{6 B_{e}^{2}}{\omega_{e}}\right) \tag{25}
\end{equation*}
$$

where $X=V^{\prime \prime \prime}\left(r_{e}\right) / V^{\prime \prime}\left(r_{e}\right), \omega_{e}$ is the vibrational frequency and $B_{e}$ the rotational constant. If we express the four above mentioned constants by means of the Sutherland parameter, $\Delta=k_{e} r_{e}^{2} / 2 D_{e}$ and the quantity $\Gamma=\frac{1}{9} X^{2} r_{e}^{2}$, then we obtain for the four above mentioned constants

$$
\begin{align*}
& y_{e}^{2}=\frac{ \pm \sqrt{\Gamma / \Delta}-1}{1 \pm \sqrt{\Gamma / \Delta}}, \quad a= \pm \frac{\sqrt{\Delta}}{2 r_{e}}, \quad b^{2}=y_{e} e^{ \pm \sqrt{\Delta}} \\
& B=\frac{D_{e} b^{2}}{4} \frac{\left(1-y_{e}\right)^{4}}{y_{e}^{2}} \quad \text { and } \quad A=\left(\frac{1+y_{e}}{1-y_{e}}\right)^{4} B \tag{26}
\end{align*}
$$

We also have for the anharmonicity

$$
\begin{equation*}
\omega_{e} X_{e}=8 \Delta \frac{W}{r_{e}^{2} \mu_{A}} \tag{27}
\end{equation*}
$$

Although the value of $\alpha_{e}$-we use experimental data to find the fourth parameter, - is different from the results when the Morse and the $\mathrm{P}-\mathrm{T}$ potential are used [13], the value of $\omega_{e} X_{e}$ turns out to be the same.

Our result is therefore the construction of a new type of analytically solvable potential which is called the generalized $\mathrm{P}-\mathrm{T}$ potential.

## References

[1] A. Bhattacharjie and E.C.G. Sudarshan, Nuova Cimento 25 (1962) 864.
[2] G. Lévai, J. Phys. A. Math. Gen. 22 (1989) 689; 24 (1991) 131; 25 (1992)L521.
[3] B.W. Williams, J. Phys. A. Math. Gen. 24 (1991) L667.
[4] Z. Yalçin, M. Simşek and S. Simşek, Acta Phys. Hung. 73 (1993) 67.
[5] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1970).
[6] G. Pöschl and E. Teller, Z. Phys. 83 (1933) 143.
[7] A.S. Bruev, Phys. Lett. A161 (1992) 407.
[8] A. Khare, Phys. Lett. B 161 (1985) 131;
R. Dutt, A. Khare and U.P. Sukhatme, Am. J. Phys. 56 (1988) 163;
J.W. Dabrowska, A. Khare and U.P. Sukhatme, J. Phys. A: Math. Gen. 21 (1988) L195.
[9] S. Flügge, Practical Quantum Mechanics I (Springer, Berlin, 1974) p. 38;
A. Inomata and M.A. Kayed, Phys. Lett. A108 (1985) 9.
[10] T. Tietz, J. Chem. Phys. 38 (1963) 3036.
[11] N. Rosen and P.M. Morse, Phys. Rev. 424 (1932) 210.
[12] M. Simsek and S. Özçelik, Phys. Lett. A, to appear, and references therein.
[13] Y.P. Varshni, Rev. Mod. Phys. 29 (1957) 664.


[^0]:    ${ }^{1}$ Permanent address: Department of Physics, Faculty of Arts and Sciences, Yüzüncü Yil University Van, Turkey.

