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Note

Generalized P6schl-Teller potential
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From the point of view of the theory of differential equations, we present a four-parameter
exactly solvable generalized Poschl-Teller potential, related to the Jacobi polynomials, using
the previously unconsidered equations.

A simple method for obtaining the solutions to the Schrodinger equation was
proposed by Bhattacharjie and Sudarshan [1]. Recently, Lévai [2] has used thisidea
for generating exactly solvable problems in non-relativistic quantum mechanics,
and a number of solvable potentials have been reported [1-4]. The purpose of this
note is to add a new type of solvable potentials to the already existing ones.

The Schrédinger equation is

d>o(r)
dr?
where

+[E-V(n() =0, (1)

2
Ez%e and V(r)——-—“v(r).

hZ

Bhattacharjie and Sudarshan [1] considered the solution of the Schrodinger
equation to be

@(r) =f(r)F(g(r)), (2)
where F(g(r)) is a function which satisfies the second-order differential equation
d*F(g) dF (g) _
i + Q(g)'—a—g—+R(g)F(g) =0. 3)

Choosing Q(g(r)) and R(g(r)), eq. (3) is reduced to a special case of the hypergeo-
metric equation [5]. Substituting (2) into (1) and comparing with (3) leads to that

f(r)is given by
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70 =& exp 5 [ 0te) de] (@

After eliminating f(r), expressed explicitly in form (4), one can easily construct
E — V(r) by comparing (1) and (3) in terms of g(r), Q(g(r)) and R(g(r)):

1 N 2
£-v0)=5£-3(5) +@[re) -3 2L - 10| (5

The idea is to find the fraction of the right-hand side of (5) corresponding to the
potential and energy. The forms of Q(g(r)) and R(g(r)) are well defined for any
solution F(g(r)) of a hypergeometric equation [5]. It transpired [2-4] that a number
of solvable potentials can be obtained by letting the solutions to eq. (3) be Jacobi
polynomials. Generally, Lévai [2] considered the differential equations

&)’ _ &)’ _ €)e _
~=c, & __ E¢ . ©)
(1-¢%) (1—g2) (1-¢%)
and used the Jacobi polynomials (eq. (22.6.1) of ref. [5]). Furthermore Lévai [2]
classified the obtained potentials as PI, PII and PIII types. Then, Williams [3] fol-
lowed this approach by using the third solution (eq. (22.6.3) of ref. [5]) to the hyper-

geometric equation, by considering the following differential equations:

2 2
(&) 5 =C and (&) 5=C, (7
(1-2) (1+g)
to find g(r). More recently, we have presented a new class of analytical solvable
potentials [4] by using the special cases of the Jacobi polynomials.
Here we shall consider the fourth solution (eq. (22.6.4) of ref. [5]) to eq. (3). So,
we take the F(g) function as

(o (&)1 B\ g
F(g) = (sm ( 2) ) (cos (2) ) P2 (cosg), (8)
where P®#(cos g) is a Jacobi polynomial which satisfies (3) when
O(g(r) =0 )

and

1—4a® 1-—4p* a+B8+1\2
R(g) = =TET )
=% sin®(§) T T6con® (n T )

Substituting (9) and (10) into (5), we obtain

E_vi =& z(g")z Ll-da (g) 148 (&)

T2 a\g 16 sin2(§) 16  cos?(%)

\ (n+a+g+l))2(g,)z' (1)

(10)
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In order to identity the potential and energy, we can use different kinds of g(r)
functions. Here, we shall consider the case

()’
= =C, 12
cos?(£) (12)
where Cis a constants.
The solution to (12) is given by

2bexp(—ar)
1 + b2 exp(—2ar)

(13)

where a and b are arbitrary constants. By substituting into (11) we obtain E and
V(r) and the corresponding wave functions

2
22 1—16( +a—i@+—l) -2
¢ ( ¢ 2 exp{~2ar) N a’b*(4a? — 1) exp(—2ar)

glr)=2 arccos{

Vi = (1 4 b2 exp(—2ar))? (1 — b2 exp(—2ar))?
(14)
and
E=-d@, (15)

where o and [ are Jacobi polynomials parameters which have the initial restric-
tions o, > — 1. As can be seen from (14) V' (r) is dependent on the quantum num-
ber n. We can remove this dependence as follow: For a given fixed o we redefine
a’b*(4a* — 1) asa constant B. Furthermore, we set

J1+ 2
___“z_bf_ (16)

2

Where A is another constant. By substitution, we have the new type four-param-
eter potential, independent of n,

Aexp(—2ar) 4 Bexp(—2ar)

—-B=a+14+2n—

V(r) =— ) 17
) (1+ b2exp(=2ar))* (1 — b2 exp(—2ar))’ (17)
where aand b are defined above, and, 4 and Bare given as
2
A=a2b2(16(n+f‘ii§—f—1) —1) (18)
and
B=d*b*(40* - 1). (19)

It should be noted that for given positive 4, B, (or «>1/2,3> — 1) and any a,b
there is an extra condition on the quantum number n,
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Ji+ 2
__.iz_bf.>2

2

in order that the potential (17) have a number of bound states. Combining these
parameters (eqs. (18) and (19)) and by substitution into (15), we obtain, the energy

spectra as
2
1 A B
2n+1+§(“\/1+&m+\/1+a—2b—2)} . (21)

From (2), (4), (8) and (13) once can find that the corresponding unnormalised
wave functions that vanish atr = co are

—a+ n, (20)

E, = -d

T(r) ~ u)*(1 — 2) P pabo2 1), (22)

1
E(
Here

2bexp(—ar)
“Tirp exp(—2ar)

The quadratic integrability of the wave functions (22) depends on their behavior
as r— 0. The Jacobi functions in (22) are well-behaved, for all values of >0 and
8> —1,asr—0.

Finally, it is interesting to compare the Poschl-Teller potential [6-9] with the
four-parameter new potential in eq. (17). By substituting i) for @ and 1 for 52, one
can rewrite the potential (17) as

A/4 B4
- COSz()\r) Sinz()\r) )

This form of the P-T potential has negative energies and it is a special case of the
potential (17). However, under these conditions the potential parameters 4 and B
(egs. (18) and (19)), and the parameters of the P-T potential, change their signs. We
note that by choosing appropriate parameters, the attractive part of our potential
(17) is reduced to the attractive part of the Tietz potential [10], and also to the
Rosen-Morse potential [11]. Moreover, one can find other slightly different analy-
tically solvable exponential-type potentials in the literature [12,13].

For applications, the four constants appearing in the potential (17) can be deter-
mined by the following three conditions for two atomic molecules:

Vi(re) =0, V(oc0)—V(r.)=D., V'(re)=k,, (24)

and also from the rotational-vibrational coupling constants

a, = —[Xr./3 + 1](633) = F(6Bg) , (25)

We We

V(r) = (23)




M. Simsek, Z. Yalgin / Generalized Poschl-Teller potential 215

where X = V" (r.)/V"(r.),w, is the vibrational frequency and B, the rotational
constant. If we express the four above mentioned constants by means of the Suther-
land parameter, A = k,r2/2D, and the quantity I = § X2/2, then we obtain for the
four above mentioned constants

yZ::t rJA-1 azi\/Z R
T 1xT/A’ 2r, co
Db” (1 - ye)* ESAY

B=—"2—2_Z2%2_ and Az( e) B. 26

4 yez’ 1~y (26)

We also have for the anharmonicity
w

weX, = 8A e (27)

Although the value of o, — we use experimental data to find the fourth parameter,
— is different from the results when the Morse and the P-T potential are used [13],
the value of w, X, turns out to be the same.

Our result is therefore the construction of a new type of analytically solvable
potential which is called the generalized P-T potential.
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