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Note 

Generalized P6schl-Teller potential 
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From the point of view of the theory of differential equations, we present a four-parameter 
exactly solvable generalized P6schl-Teller potential, related to the Jacobi polynomials, using 
the previously unconsidered equations. 

A simple method for obtaining the solutions to the Schr6dinger equation was 
proposed by Bhattacharjie and Sudarshan [1 ]. Recently, L6vai [2] has used this idea 
for generating exactly solvable problems in non-relativistic quantum mechanics, 
and a number of solvable potentials have been reported [1-4]. The purpose of this 
note is to add a new type of solvable potentials to the already existing ones. 

The Schr6dinger equation is 

d2~p(r) 
dr------i--+ [ E -  V(r)]ff'(r) = O, (1) 

where 

E = ~ - e  and V(r) : v(r). 

Bhattacharjie and Sudarshan [1] considered the solution of the Schr6dinger 
equation to be 

ffJ(r) = f (r)F(g(r) ) , (2) 

where F(g(r)) is a function which satisfies the second-order differential equation 

dEF(g) dF(g) 
+ Q(g)--~g + g(g)F(g) = O. (3) dg--- r -  

Choosing Q(g(r)) and R(g(r)), eq. (3) is reduced to a special case of the hypergeo- 
metric equation [5]. Substituting (2) into (1) and comparing with (3) leads to that 
f ( r )  is given by 
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f(r) = N(g')-l/2 exp[l fgQ(g)  dg] . (4) 

After eliminating f(r), expressed explicitly in form (4), one can easily construct 
E - V(r) by comparing (1) and (3) in terms ofg(r), O(g(r)) and R(g(r)): 

g~" 3 ( f )  2+(g,)2 [R(g) 1 dQ(g) 1 Q2(g)] . (5) 
E -  V(r) = Eg' 4 2 dg 4 

The idea is to find the fraction of the right-hand side of (5) corresponding to the 
potential and energy. The forms of Q(g(r)) and R(g(r)) are well defined for any 
solution F(g(r)) of a hypergeometric equation [5]. It transpired [2-4] that a number 
of solvable potentials can be obtained by letting the solutions to eq. (3) be Jacobi 
polynomials. Generally, L6vai [2] considered the differential equations 

(g j)2 (gl)2 (gj)2g 
( l _ g 2 ) - C ,  ( 1 _ g 2 ) 2 - C ,  ( 1 _ g 2 ) 2 - C  (6) 

and used the Jacobi polynomials (eq. (22.6.1) of ref. [5]). Furthermore L6vai [2] 
classified the obtained potentials as PI, PII and PIII types. Then, Williams [3] fol- 
lowed this approach by using the third solution (eq. (22.6.3) of ref. [5]) to the hyper- 
geometric equation, by considering the following differential equations: 

(g)2 _ C and (g)2 _ C, (7) 
(1 - g )2  (1 + g)2 

to find g(r). More recently, we have presented a new class of analytical solvable 
potentials [4] by using the special cases of the Jacobi polynomials. 

Here we shall consider the fourth solution (eq. (22.6.4) ofreE [5]) to eq. (3). So, 
we take the F(g) function as 

a+ l /2  / [g \  \ f l+l/2 
= 

where P~,fl (cos g) is a Jacobi polynomial which satisfies (3) when 

and 

Q(g(r)) = 0 (9) 

( 1 - 4 a  2 1-4132 a +  + 1  
R(g) = l~i~n--~2~) t lg~os--~2 ) ~- n q 

1 - 4t32 (g/)2 
- - 4  16 cos2(~2) 

Substituting (9) and (1 O) into (5), we obtain 

gj,, 3/,g,,X2 1_4t~2 (g/)2 
E -  V(r) = 2g' 4 ~ )  -~ 16 sin2(~2) 

( a +  13-t-1).) 2 
+ n q 2 (g,)2. 

(10) 

(11) 
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In order to identity the potential and energy, we can use different kinds ofg( r )  
functions. Here, we shall consider the case 

(g,)2 
cos2(~2) - C,  (12) 

where C is a constants. 
The solution to (12) is given by 

2bexp(-ar) ] 
g(r) = 2arccos 1 + b2exp(-2ar)] (13) 

where a and b are arbitrary constants. By substituting into (11) we obtain E and 
V(r) and the corresponding wave functions 

a2b 2 - 1 6  ~ a + / 3 + l  exp(-2ar )  
2 

V(r) = 
(1 + b 2 exp(-2ar ) )  2 

a2b2(4a ~ - 1) exp( -2ar )  

(1 - b 2 exp( -2ar ) )  2 

(14) 

and 

•/ A 
1 + a2b---- 5 

- / 3 = a + l + 2 n  2 (16) 

Where  A is another  constant. By substitution, we have the new type four-param- 
eter potential,  independent of n, 

V(r) = Aexp(-2ar)  + Bexp(-2ar)  (17) 
(1 + b 2 exp(-2ar ) )  2 (1 - b 2 exp( -2ar ) )  2 ' 

where a and b are defined above, and, A and B are given as 

A = a2b2 (16(n-~  a + / 3 + 2  1) 2 - 1 )  (18) 

B = a2b2(4a 2 - 1). (19) 

It should be noted that for given positive A, B, (or a >  1/2, /3> - 1) and any a, b 
there is an extra condition on the quantum number n, 

and 

E = - a  2/32, (15 )  

where a and/3 are Jacobi polynomials parameters which have the initial restric- 
tions a , / 3 >  - 1. As can be seen from (14) V(r) is dependent on the quan tum num- 
ber n. We can remove this dependence as follow: For  a given fixed a we redefine 
a2b 2 (4a 2 - 1) as a constant B. Furthermore,  we set 
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A 
1 + a2b--- 5 

-o~ -~ 2 >2n,  (20) 

in order that the potential (17) have a number of bound states. Combining these 
parameters (eqs. (18) and (19)) and by substitution into (15), we obtain, the energy 
spectra as 

2 , , + 1 +  - l+-rb b2+ +--rbsb 2 . (21)  

From (2), (4), (8) and (13) once can find that the corresponding unnormalised 
wave functions that vanish at r = e~ are 

#(r) _~ ~a2a (u)~(1 -u2)(a+l)P~n'~(2u2 - 1 ) .  (22) 

Here 

2b exp(-ar)  
u 

1 + b 2 exp(-2ar) " 

The quadratic integrability of the wave functions (22) depends on their behavior 
as r ~ 0. The Jacobi functions in (22) are well-behaved, for all values of c~ > 0 and 
/3> - 1, as r---~0. 

Finally, it is interesting to compare the P6schl-Teller potential [6-9] with the 
four-parameter new potential in eq. (17). By substituting i)~ for a and 1 for b 2, one 
can rewrite the potential (17) as 

V(r) = A / 4  B /4  (23) 
COS2 (/~r) sin2 (/~r) " 

This form of the P-T potential has negative energies and it is a special case of the 
potential (17). However, under these conditions the potential parameters A and B 
(eqs. (18) and (19)), and the parameters of the P-T potential, change their signs. We 
note that by choosing appropriate parameters, the attractive part of our potential 
(17) is reduced to the attractive part of the Tietz potential [10], and also to the 
Rosen-Morse potential [11]. Moreover, one can find other slightly different analy- 
tically solvable exponential-type potentials in the literature [12,13]. 

For applications, the four constants appearing in the potential (17) can be deter- 
mined by the following three conditions for two atomic molectdes: 

V'(re) = 0, V(oo) - V(re) = De, Vt'(re) = ke, (24) 

and also from the rotational-vibrational coupling constants 

a. : - [Xr ,13  + 1](6Be2~ = F(6B2e~ , (25) 
i 

\ ~Oe ,/ \ We / 
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where X = V ' ( r e ) / V " ( r e ) ,  We is the vibrational frequency and Be the rotat ional  
constant.  I f  we express the four above mentioned constants by means of  the Suther- 
land parameter ,  A = k e ~ / 2 D e  and the quanti ty F = ~ X 2 ~ ,  then we obtain for the 
four  above mentioned constants 

y2e = 4- V / i f / A  - 1 X /~  62 = yee±V' Z 
, a = d : 2 r  e , I ± X / ~  

(1 + Y e )  4 B =  D ~ b 2 ( 1 - y e ) 4  and A =  B (26) 
ye  1-- :Zye " 

We also have for the anharrnonicity 

W 
weXe = 8 A  r2#A . (27) 

Al though the value of  ae - we use experimental data to find the fourth parameter ,  
- is different f rom the results when the Morse  and the P - T  potential  are used [13], 
the value ofw~Xe turns out  to be the same. 

Our  result is therefore the construct ion of  a new type of  analytically solvable 
potential  which is called the generalized P - T  potential. 
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